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ADMISSIBILITY OF POSSIBILITY FUNCTIONS AND
OTHER NON-PROBABILITY FUNCTIONS IN LINDLEY'S
EXTENSION OF THE DEFINETTI-SAVAGE UNCERTAINTY GAME

I.R. GOODMAN

CODE 421
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGG, CALIFORNIA 92152-5000

Abstract

One of the key problems remaining in the design of an expert system - as well av
in Artificial Intelligence models in general - is what uncertainty function ar
measure is most appropriate to use. Should one choose a Dempster-Shafer, fuzzy
set, or classical probability approach. among a myriad number of possibilities ?

The purpose of this paper is twofold: First, to clarify Lindley's “xtinsion of
the "dutch book” arqgument for probability and related functions over the .hoice of
other possible uncertainty functions. Second, to show that Lindley's conclusions
concerning the inadmissibility of possibility functions and Dempster-Shafer functions
were patently incorrect in general. A1l of this is accomplished by, once and for all,
placing the problem within a rigorous game theoretic setting.

1. INTRODUCTION

In [1], Bacchus et al. have established certain arquments against the bayesian-
ist practice of assuming,or attempting to demonstrate,that degrees of persgnal belief
must coincide with proLability. Their case covers various aspects of bavesian con
ditional probability updating approaches, including the general static dutch book just-
ification for conditionalization, as well as dynamic updating, reflection,andCarnap’s
confirmation approach. But, it is only the first topic that this paper wishes to ad-
dress; the remainder will be left to a future work. It is clear, that despite the in-
vective, Bacchus et al. have not really analyzed in full depth Lindley's results [2].
But, neither has Lindley, despite his additional comments railing against non-prob-
ability procedures [3)}! In addition, recently, Klir [4] has added to the controversy
- part of the Cambridge Debate on Uncertainty, but not published there [S] - by oppos-
ing lindley, not on his own grounds within the setting of Lindley's assumptions , but
rather by appealing (rather attractively) to other criteria. There is no question that
polemics must be put aside and open unbiased analysis be carried out on this issue.

Consequently, this paper is devoted to re-examining tindley's contention that
probability is essentially the only "admissible” uncertainty function within ‘rationa¥
context. Since lindley's argument was couched in seemingly informal,and at times ,vague
language, the entire problem is restated within a rigorous game-theoretic setting which
is natoral to the issue. It becomes clear that Lindley's use of“"admissibility"is a much
stronger concept than ordinary admissibility; nevertheless, his first set of conclusions
that the class of (uniformly - to be explained) admissible uncertainty functions must
coincide with some fixed monotone transform of probability remains valid.twever,1t can
be shown that his further conclusions that this implies possibility functions and Demp-
ster-Shafer functions are necessarily inadmissible (in Lindley’s uniformsense) in general
is wrong. In a word: probability is preserved when a monotone {or other) transtform 15
taken within the argument of the operator, but not when it is composed from the outside
with probability. Specifically, it is shown that there are large classes of fuzzy'SOt
membership functions and their t-conorm possibility extensions(see [6})which arc indeed

U.§. Governmant work not protected by U.8, copyright.
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admissible completely within Llindley's sense. Furthermore, there is at least one
type of non-admissible possibility measure - Zadeh's max-possibility - which under
many circumstances 16 the uniform limit of admissibile possibility functions. In
addition, not all Dempster-Shafer belief functions are inadmissible- the positive

pewers {exceeding unity) of probabilities are all admissible Dempster-Shafer belief
functions.

finally, it is hoped that by putting the dutch book problem within a purely
game-theoretic setting, additional properties of this game - such as game value,
or upper game value, least favorable priors, minimax uncertainty functions, etc. -
can be obtained and utilized. Certainly, there should be room for extending the
game to other types of general loss functions, as well as to include epistemic con-
siderations not touched upon so far. Because of space limitations, a number of topics
have been omitted here and are considered in some detail in [13].

2. NOTATION ANO DEFINITIONS N,

Throughout the remainder of this paper, unless otherwise specified, suppose the
following obtains:

Q is a fixed nonvacuous universal set of points w ¢ @, with R ¢ P(R), a boolean

algebra with events indicated by a, al,az,...,b,b‘,bz,... £ R, and having the ususl

boolean operators:s , conjunction / intersection ¢ v, disjunction / union ¢ and ( ),
negatign / complement. In addition, s represents the usual partial {(lattice)} order
over corresponding to subevent ordering. Conditiona! events are denoted typically
as (a|b) {a being consequent and b antecedent of the event), where each can be inter-
preted in at least three equivalent ways: principal ideal cosets, closed intervals of
events, three-valued logically via DeFinetti's indicator function. (See [7],(8] for

expositions on conditional events.) Taking the third approach, one writes

1 iff (alb) occurs at w iff w ¢ asb
4’(3“’)(@) = 0

iff (a|lb) does not occur at w iffwe a'-b (1)
u iff (a[b)'s occurrence at w is undetermined
iffweb'.

In conjunction with the regions for determining the conditiona: event indicator func-
tion, define functions w,, j e Ko s Where

J
d
KO h {O,u,])) (2)
and

w@lo) Lo, woale) arn L vy Lo (3)

Although, conditional events will play some role in the development of the un-
certainty game, many of their properties are not needed here. However, it should be
noted that the characterization in (1) is sufficient to show

(alb) = (a-blb) , (aja) =a . {4)

to which one adds the natural evaluation for any given probability (always assumed

here no stronger than being finitely additive) p:R~+ [0,1], [0,1] being the unit
interval,

d
p{{alb)) = plalb) = p(a-b)/p(b) ; for p(b) >0 , (5)
ordinary conditional probability. Denote the space of all conditional events (a[b)

for a,b ¢ R arbitrary, as (R|R). Hence , by {4} ,R ¢ (R|R).
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Introduce also the following multivariable notation, for any given positive 1n-
teger n and a b, € R:
San a6l (o b ): (ald)¥((a,[b,)..ula (b)) ¢ (RIR)" ¢ elajb)(w) ¢
L T A 1°°7 T’ =i LA “Ta'ltn o
- w, (a.|b ) §(6)
5 B

~

]

X n 4, Cy ¢
(¢(allbl)(“)""¢(an bn)(w)) €K lﬁ(J]:‘-.Jn) € Ko wl(glﬂ)“

Mgg)gwfgyricﬁ}.

noting that since {wj(alb):jcKo} is a (disjoint, exhaustive) partitioning of §t, =0

is w(alb).

Tall £:00,1]xK_ + R (real line) a betting or score function iff f(-,6j) is ¢
tinuously differentfible over [0.1], denoting f'(s,3) = af(s,3)/9s . se{0,1], j=0
with f{.,0} strictly increasing and f(-,1) strictly decreasing over [0,1], so t

0=€(j,j) , j=0,1 ; f{-,u) =0 . (7}

A prime example of a betting function iy for essentially the case treated in
e.g. [9] leading to probability, where 2

—
=

Y
re

g [Ae(s-3)0 . 3500, s (0,13,
fs.d) 22 7 (8)
. Jru, sef0,1] ,
where Aj are fixed real constants.
For any s ¢ (0,1]" , t e K} , define

-~ P
f = .

(g,g) .Z f(si‘ti) (9)

1
Then, define the two player Zero-sum uncertainty game
Ge d G(N,Uzlossf) (10)
as follows: Player 1 or Nature, has as 1ts space of pure strategies

1

N9 (slaib)(w): we 2, (alb) e RIR, ns1,2,... ), (1)

each ¢(aJb)(w) being a possible outcome/no outcome/undetermined outcome-combination,
determined by finite sequence of conditional events {a|b) and w. Player 2, or Decision-
maker, has as its space of pure strategies

ud o 1RIRY (0l qurir) ~ (001D (12)

where each q in {12) is called an uncertainty function, q{a|b), for any (alb) e (R|®),
representing the uncertainty of (a]b) occurring, i1.e., that w € Q, unknown to Player 2,
is such that ¢(afb){w) = 1, i.e., @ € a-b. Thus, U certainly contains all conditional
or unconditional possibility functions, probability measures (finitely additive), Demp-
ster-Shafer functions, etc.
Also, for each betting function f, define loss function lossf:N xUI -+ R, by
- (13)
loss (q,¢(a[b) (w)) g f(q(alb).é(alb){w)); q(gig)g(q(hlb,)....q(anlbn)),aﬂ (a]b),w,q.

Clearly, (13) implies the expansion, for any {a|b),w,q :
3 aid

loss (q,¢(a[b)(w)} = | ¢ ) f(q(ai!bi).jz ). (14)
j=0 {i: 1sisn & we¢ Hj\ai‘bi’

and for any random variable W over @ with prior prob. distribution F, the expected
loss s

d 1
. = E,(1 {alb)(W))) =7 p - : :
p(a.Fi(alb)) = E (loss (q.e(a|b)(W))) iEM(;_(,‘;ib‘) JZOFJ.(.a].lb].) fla(a;lb:),3)» (15)
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where
Fj(ailbi)gpr(wewj(aiIbi)lwebi).j=0,},i=l.2...; H(Q,F)g(izlsisn & Pr(wcbi)>0}. {16)

The loss in (13) can be interpreted as the amount incurred by the Decision-
maker when bétting function f is agreed to (by players 1 and 2 or outside referee),
finite sequence of (conditional) events {a|b) is considered and uncertainty function
q is chosen by the Decision-maker to apply to {2|b), and in reality, unknown to the
latter,event outcome mechanism is at w ¢ 2; similarly, for the expected loss relative
to w being assigned a random variable W.

Define also, for each (alb) € (R]R)n, the subgame Gf(g!g) of G,
duced to N(a|b) and U to u(a]by, with loss, similarly restricted,

6,(alb) ¢ 6(N(afb).Ula]b);loss ); Nalb)ta(alb)(w) wends uale)d [o,130210). (1)

Also, by using (4), one can consider the unconditional subgame Gf(a) of G . where
o LML LAl L 4
6e(a) € 6 (al2) = 6(u(a).uca)itoss ) (18)

where N is re-

f

where N{a),u(a) are limited to events of a and similarli for loss . One can also de-
fine the full unconditional subgame Cf of Gf » where N = {¢(a)(w) :we} replaces W

and U = LO,]]R replaces U, etc.

With the above established, define the uniform counterparts of two basic con-
cepts of game theory, keeping in mind the unconditional counterparts to the definit-
ions:

(i} For any given uncertainty function q, € U, call q5 uniformiy bayes relative to
random variable W over @ with prior prob. =~ dist. F, for Game G, iff g. is bayes

relative to W for each subgame Gf(gjg), for all (afb) e (R|R)", n=]'2".o ence.
plq,»Filalb)) = inf p(qiF;(alb)): all (afb). (19)
qeu(alt)

Use the notation that qo = qF

(ii) For any given q_ € U, call q_ uniformly admissible for Gf iff q is admiss-
ible for each subgame® Gf(gjg), foft each (a[b) ¢ (R[R)T, n=1 2',... Henle,

{%11 (alb)){not true there exists q(a[b)fslj)
(lossf(q(y@Pﬂa_lg)(m))s 1ossf(q0.¢(a_{g)(m)), allwen ,

with strict inequality holding for at least some w € Q)} . (20)

Finally, for each bettiag function f, define nondecreasing continuous transform
Pe:[0,1] + [0.1], with P(J) = §, j=0,1, where,for all s e [0,1],

[[[=%

Pels) $1/0-0050) 5 g ls) ¢ £ (5,109 (5,00 (21)

If £(s,j) exists, j=0,1, with Q'(s) > 0 , for all s ¢ [0,1], then P_will be strict-

1y increasing over [0,1]. In pargicular, this is quaranteed, if f(s,f) is convex in s,

for all s ¢ [0,1].
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3. THE BASIC RESULTS
Theorem 1. Properties of the subgames Gf(gjg)-

Let f be any betting function, n any positive integer, and (alb) ¢ (RiQ)n
arbitrary. Then: ’

(i) @ (3{9) is equivalent to an S-qame, i.e., player 1's space Ma]b), or equival-
ently | w alb) (with cardinality s 3") is finite. Player 2's space in the usual prod-
uct topology is compact, as well as being convex and loss_ is continuous, Thus,
(lossf(q,¢?;j§): q £ U(a|b)} is a bounded compact risk setf

(1i) As a consequence of (i), the classical assumptions of Blackwell & Girshick{{10],
section 5.2) and Wald ([11], Chapter 3) are all satisfied. (See also [12] ,Chapters 1,
2.), showing G (gjg):has a game value; a least favorable prior distribution over @,

for which a &inimax uncertainty measure exists as bayes relative to ft; and the class
of all bayes uncertainty functions forms a complete class, among other properties.

{iii) In particular, for any random variable W over Q with distribution F, the bayes
uncertainty function Qe (alb).f satisfies the relaticn

P (q

¢ a;[bi)) = Fla b)) . alt e M(bF) (22)

F,(iib ,f

and, assuming P is strictly increasing over {0,1], the corresponding minimal e.pected
loss is :

olag (afp), ¢ F(2lR)) = ] Priveb,)- 'Zo Fj(ai[bi)-f(P;](F](ailbi)),j). (23)
- ieM(b,F) ¥

Proof:(i) and (ii) are self-evident. For (iii), apply the usual ciffersntiation tech-
nique to (15) relative to variable q(ailbi). (23) is a result of substituting (22) in
(15).

Remark. Eq.(23) appears promising for developing <closed form expressions for game
value, minimax uncertainty function, and least favorable prior, in view of Theorem 1.

=
Theorem 2. Lindley's first basic result restated and reproved ([2], Theorem 2}.

For any choice of betting function such that P is strictly increasing over {0,1]
and any given uncertainty function q ¢ U, the follo&ing statements are equivalent:

(i) gq is uniformly admissible for G
(ii) q is uniformly bayes for Ge - X
(iii) Pfcq is the conditional probability extension of some probability over R.

Proofzgii) implies (i): By the form of bayes uncertainty functions given in Th-orem 1,
eq.{22), each is unique for subgame G _{a|b), and hence admissible.

(i1i) implies ?ii): Retrace thefsféﬁs of proof of Theorem 1(iii), noting Pfoq

is a probability over w(a|b).

i; implies (iii): Note first that (i) implies q is admissible for G_(a]b) for
all (a}p_ satisfying two classes: (I):{a|b)=((a]jb),(a*|{b)) (n=2)}, ana () f {ab)=
((a]b),b,a-b) (n=3), for all a.b € R. In turn, use the fact that admissibility implies
weak local admissibility (see [13] for complete details), so that sketching the basic
properties, eq.(20) yields differential of loss¢(q.¢(afb)) with respect to dq(a|b)
which cannot be non-positive for all caomponents of dq{a[b) and negative for sofe one.
Equivalently, this means one cannot have in the same ordering sense as above

Ie(aa(alb))-daalb) <0 5 Jc(a.6(alb)) ¢ at0ss (q,8(alb))/aa(alb), (24)
for all (a|b) of type (I) or (11).

£
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Eq.(24), in turn translates to the conditions det(J ) - 0 , for appropriate
rank reductions for cases (I) and (I1). This yields:

e (); det{f‘(Q(a‘b)’]) f’(Q(a'ib).O)}=O mplying P (alalb]) <P {als"
£(qla]b),0) f'(afa’[b) 1) Oimplying P lalalb)) P fala’b)
for all a,b ¢ R.
£'(q(alb),1) £'(q(b),1) f'(q(a-b),1)

(25)
)’.J‘

.

Case (II): det|f'(q(alb),0) f'(a(b),1) f'(q(a-b),0){=0, (26)
0 f'(q(b),0) f*(qla-b),0)
implying
Pela(alb]-P(alb)) = P (ala-b)}, (27)

for all a,b e R.
Finally, combining (25) and (27) shows (iii}.

Remark. The proof technique for (i) implies (iii) is originally due to Definetti
{9]. By replacing in that proof Cases (I) and (11) by simply

case(III): (afb) = (a,c,avc), a-c = 0, then one obtains
f'(qa),1) f'(alc),1) f'(qlavc),1)
Case(IlI): det{f'(q{a),0) f'(qlc).1) f'(qlavc),)} = 0, (28)
f'(q(a),0) f'(q(c),0) f'(qlavc),1)
implying
Pf(q(avc)) = Pf(q(a)) + Pf(q(C)) , all a-c = 0, (29)

This proves Pfeq 1is an unconditional probability over R, which together with the
readinder of the proof of Theorem 2 modified for remains valid. Thus, Theorem
2 holds for the unconditional subgame éf , With alf statements appropriately made

into unconditional ones. -

Next, call uncertainty function q Eeneraluniform]y{unconditional] admissible
iff there exists betting function f suc at q is uniform Lunconditional] admiss-
ible for G, [éf] .

Theorem 3. Lindley's second basic result restated ( (2], Theorem 2 and Lemma S).

let g € U be any uncertainty function. Then, the following statements are
equivalent: N

(i) q is geheral uniformly[unconditional) admissible.

(ii) There exists a continuous increasing transform P:{0,1] = [0,1] with P{3)=3J,
j=0,1, such that Poq is a conditional probability [unconditional probability].

Proof: Immediate from the fact that as f runs over all possible betting functions,

Ff runs over all P,s as above, in conjunction with Theorem 2. .

Remark. It was Lindley's contention that because of Theorem 3's characterization of
(§Eheral uni form) admissible uncertainty functions, the non-probability-appearing
possibility functions as well as Dempster-Shafer and other uncertainty functions
gbuld not possibly be (general uniform) admissible. But the class of all monotone
increasing continuous etc. transforms on all conditional [or on all unconditionall

probabilities is surprisingly rirh and ges beyond just p.ubability(wnen the trans-
form is the identity map). This is snown next.
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in order to present the next results, the concepts of t-conorms and t-possibil-
ity extensions of fuzzy sets (or fuzzy set membership fupctions, equivalently) are re-
viewed. For further details, see e.g. Goodman & MNguyen ({6}, Chapter 2).

A t-conorm is a semi-group-like binary operation t:{O,l]z - {0,1). Specifically,
t is associative, commutative, nondecreasing in each argument with t{x,0)=x and t(x,1)
=1, for all x € [0,1]. If also, t(x,x) > x, all 0 < x < 1, call t archimndean. The
following theorem is extremely important in the next development:

Theorem 4. (Ling's Theorem [14] .)

(i) Llet t be any archimedean t-conorm. Then, there exists a continuous increasing
function gt:[O.lﬁ + [0,4=] with g{0)=0 such that

Ex,y) = g, (min{g,(x)+g,(y) ,g(1))):all x.y € [0.1). (30)

{(ii) Conversely, if g is any function satisfying the same properties as g, above

eq.(30), call g a generator, and any function t defined as in (30}, g repl&cing 9y

yields a legitimate t-conorm which is archimedean. .

Remarksand definitions, By utilizing associativity, any t-conorm can be naturally ex-
tended o any finite- and by limits, to countably infinite- Aumber of arguments,

where, by convention t(x) = x (i.e., identity) for al1 x ¢ [0,1] . By Ling's The-
orem, any archimedean t-conorm's multi-argument extension has the simple form

t(x],...xn) = gt_](min(gt(x})*..igt(xn),g(‘l))), all x, ¢ [(0,17. (31

max is an example of a non-archimedean t-conorm, while probsum, t, ,bndsum are ex-
amples of archimedean t-conorms. among an infinitude of such (aga?n, see [6] ), where
using multivariable notation

_;Sg(x],..,xn)t:[o,l]n;sum(g)gx] t. +xn;_1_~5=(l-x‘ .o J-xn) ;prod(z)gy] Ty {32)
all x..y; € [0,1], etc.

probsum(x}=1-prod(1-x) ; gprobsum(x) = -log{1-x), all x ¢ [0,1] ; (33)

tp(5)= min(sum(ﬁ?),l)]/p v 9, (x) = xP, at1 x ¢ [0,1] p2l. (34)
P

bndsum({x)=min(sum(x),1) ; gbndsum(x) = x (identity) , all x ¢ [0,1]. {35)

__ Finally, supposing as usual R c 2(Q), but now that  is finite or countably in-
finite in cardinality, let £:0 + (0,1] be any fuzzy set {membership function) on Q
and t any teconorm. Then, the t-possibility extension of § is 5t:2 < 12,17 given oy

5t({w})96(m),oss ; £t(a)gt(6(m):m €a), all aeR. (36)

t-possibility extensions are all thus in U and play a lead role in fuzzy set theory
as well as in random set theory in relating fuzzy sets and possibilities to probab-
abilities (again, see {6] }. Mte that when t is an archimedean t-conorm with gener-
ator g, (36) becomes R p
all a ¢ R: 6t(a) =9, (min(sum(ﬂ(a)),gt(l))); §la)2(§(w) weal).  (37)
]
Theorem 5. First refutation of Lindley's conclusiors

o
let q € U be any unconditional uncertainty function and, as above (from now on)
 is finite or countably infinite. Then, the following are equivalent:

(i) q is general uniformly unconditional admissible. . .
(i1) q is the t-possibility extension of some fuzzy set £:2 + [0,1], where t is arcﬁ;—
medean with generator g, such that g.°f is a probability function over f2 with g, (1)=1.
Proof:(i) implies (ii): Let t have generator 9, d P, .lii) implies(i): Find betting
function f so that P =g, - (Both proofs of course use Theorem 3.) .
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Theorem 6. Second refutation of Lindley.
Let 4:00 + [0,1] be any fuzzy set with Ocsup(4{Q))<1. Then, the following are equival-
ent:

(i} There is an archwedean t-conorm t such that 6t € f{ is general uncond. admissible
{i1) The level sets of ¢ are all finite. That is, §-'[s,1] is finite, Oc<ocl.

Proof:(i) implies (ii):(‘[s,l],for some s being infinite violates Theorem S{ii).
(i1) implies (i): From Theorem S, need only construct generator g satisfying

Theorem 5(ii). This long construction is given in [13], proof of Theorem 5.2.2. -

Remark. The t-conorms in (32}-(35) can be used to satisfy Theorem S(ii)for appropriate
choice of fuzzy set {. When Q is finite, Theorem 6{ii) is satisfied.

If fuzzy set { satisfies hypothesis of Theorem 6, sum(4(R))si, and
card(g'][lln, 1/(n-1)])s x]-n"z ~h=2,3,.. 5 xj > 0 constants, j=1,2, (38)

then, for any fixed positive integer o » the following limit holds uniformly in a:
. _ . e _
plupw(étp(a)) = ‘mx(a) ; all aeR, card(a)sny , a-§ (sup(4(n))) =0, (39)

Thus , Zadeh's max possibility extension under general circumstances isthe uniform Yimit
of general uniformly unconditional admissible t-possibility extensions of fuzzy sets.

Finally, it is stated without proof (see [13], section 6) that the class of
all r powers of any probability measures{conditional or unconditional), for any

r 2 1, consists of general uniformly admissible Dempster-Shafer belief functions.
-
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